
B.Comp. Dissertation

Underwater Real-Time Object Recognition and Tracking for
Autonomous Underwater Vehicle

By

Tan Soon Jin

Department of Computer Science

School of Computing

National University of Singapore

2016/17



B.Comp. Dissertation

Underwater Real-Time Object Recognition and Tracking for
Autonomous Underwater Vehicle

By

Tan Soon Jin

Department of Computer Science

School of Computing

National University of Singapore

2016/17

Project No: H021400
Advisor: Prof. Terrence Sim Mong Cheng
Deliverables:

Report: 1 Volume



List of Figures

1.1 Aerial view of TRANSDEC. Operational depth of 16 ft for most vision tasks . . 1
1.2 Robosub 2016 Vision Tasks. a) Scuttle Ship b) Navigate Channel c) Weigh

Anchor d) Set Course e) Bury Treasure (Coins) f) Bury Treasure (Island) . . . . 2
1.3 Absorption of light at the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Different vision challenges. a) Haze formation b) Partial occlusion c) Non-uniform

illumination d) Sunlight flickers e) Shadow . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Proposed vision framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Main methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Dataset generation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Model learning methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Object tracking methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Color normalization results (left to right):
Top row: a) Raw input, b) Finlayson’s comprehensive normalization, c) Grey-
world
Bottom row: d) IACE, e) Finlayson’s non-iterative normalization f) Shade of Gray 16

4.2 Effect of applying gamma correction: (top row) no gamma correction, (bottom
row) with gamma correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Applying novel grey pixel illumination estimation: a) Raw input, b) Color corrected 19
4.4 Spatial domain based illumination estimation: a) Raw input, b) Color corrected . 19
4.5 Underwater image enhancement results (left to right):

Top row: a) Raw input, b) Dark channel prior, c) Single image fusion
Bottom row: d) CLAHE, e) Red channel prior . . . . . . . . . . . . . . . . . . . 20

4.6 Single underwater image enhancement by fusion . . . . . . . . . . . . . . . . . . 21
4.7 Illumination compensation results (left to right):

Top row: a) Underexposed input, b) Chih’s light compensation, c) Chen’s light
compensation
Bottom row: d) Flicker input, e) Homomorphic filter f) Gamma corrected . . . . 22

4.8 Comparison between logarithm curve and gamma curve . . . . . . . . . . . . . . 23

5.1 Different object proposal paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Object proposals using MSER: a) Buoy task, b) Coin task, c) Set date task . . . 26
5.3 Object proposals using saliency approach . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Objects with similar colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Dashed lines denote shortest path withint the shape boundary . . . . . . . . . . 32

7.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.1 Tracking pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



9.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



List of Tables

9.1 Competing trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 Raw results across all datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



Chapter 1

Introduction

1.1 Background on Robosub

1.1.1 Information about the competition

Robosub is an international AUV competition where students from around the world build their

own customized AUV to complete a series of underwater missions that involve both visual tasks

and acoustics task. The competition is held annually in TRANSDEC (Transducer Evaluation

Center) man-made pool.

Figure 1.1: Aerial view of TRANSDEC. Operational depth of 16 ft for most vision tasks
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1.1.2 Description of vision tasks

Vision tasks in Robosub can divided into forward-facing tasks and bottom-facing tasks which

poses different sets of challenges. Since the tasks do not vary significantly every year, we can

use datasets collected from this year’s competition as testbed for our vision algorithms.

Figure 1.2: Robosub 2016 Vision Tasks. a) Scuttle Ship b) Navigate Channel c) Weigh Anchor

d) Set Course e) Bury Treasure (Coins) f) Bury Treasure (Island)

1. Scuttle Ship (Buoy) A recurring task where the AUV has identify the correct color

buoy and touch it. There are two major challenges with this task:

a. Red buoy tends to exhibit color distortion as red wavelength attenuates the fastest

(Galdran, Pardo, Picón, & Alvarez-Gila, 2015).

b. Non-uniform illumination on top-half of buoys make it hard to distinguish the buoys.

2. Navigate Channel

The AUV is required to move in between and over the PVC pipes.

3. Weight Anchor

Classic object classification task where the AUV is required to drop a marker into the

correct bin to obtain maximum points after removing the cover using a manipulator.
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4. Set Course

Identification of covered square (orange panel) and remove it. Fire two markers over 2

smaller holes. As yellow and orange are really close on the colour spectrum, this forces us

to use other visual cues such as edge for better detection.

5. Bury Treasure

For this task, one has to identify the small cylinders (red and green) and drop them

onto their respective colored circles (on the Island). Identifying and distinguishing small

objects afar (4 m) underwater is the biggest challenge in this task. Besides that, the

dropped cylinders may potentially occlude the circles.

1.2 Challenges in Underwater Image Processing

Many literature such as M, Abhilash, and Supriya (2016) that investigates various underwater

image restoration methods cite haze formation which happens as light propagated from object

undergoes attenuation and scattering causing image with low contrast. In addition, Beer-

Lambert law (Gevers, Gijsenij, Van de Weijer, & Geusebroek, 2012) states relates attenuation

of light to properties of water medium; therefore, light components with low wavelength; green

and blue are not as easily absorbed compared to red wavelength. This causes underwater images

tend to have greenish or bluish color cast.

Figure 1.3: Absorption of light at the surface
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1.3 Project Requirements Analysis

Though it is the objective of the project to design a vision framework for the Robosub missions,

the vision framework should also be easily extended to work for more complex real world

applications.

1.3.1 Nature of tasks

1. Vision algorithms perform with acceptable accuracy under the following conditions:

Figure 1.4: Different vision challenges. a) Haze formation b) Partial occlusion c) Non-uniform

illumination d) Sunlight flickers e) Shadow

2. Low detection latency (near real-time)

AUV needs to make swift decision based on sensor inputs to complete task under time

constraints (same for real world time critical mission i.e underwater mine detection)

3. Geometric properties of objects are made known in advance

4. Short-period single target tracking for task (unlike video surveillance application)

5. Able to detect objects from far away (5m) and near distance (for manipulation task)
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Chapter 2

Literature Review

This review is conducted with the purpose to investigate and select most suitable algorithms that

generate the best result on the Robosub datasets. Since every teams who participate in Robosub

are required to submit a journal paper,vision algorithms deployed by top-peforming schools

such as Cornell University, University of Florida and cole de technologie suprieure provide

valuable insights on image processing that are effective in underwater environment. Besides

that, review of popular image processing techniques in particular on topics like object detection,

object tracking, color constancy, saliency mechanism, detection proposals and adapatation of

algorithms.

2.1 Preprocessing

2.1.1 Underwater Image Enhancement

The paper by Garcia, Nicosevici, and Cuf́ı (2002) compared methods such as homomorphic fil-

tering and local adaptive histogram equalization (Contrast Limited Adaptive Histogram) which

considers that image is a product of illumination and reflectance properties. However, homomor-

phic filter has the benefit of preserving sharp edges while attenuating non-uniform illumination.

On the other hand, by only redistributing pixels exceeding a clipping level to increase con-

trast of an image, CLAHE manages to reduce noise amplification in normal local histogram

equalization.
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Instead of relying on a single image, Gracias, Negahdaripour, Neumann, Prados, and Garcia

(2008) recover corrupted underwater image by finding the difference between the current frame

with temporal median of a registered set of N frames. Image dehazing is equally as impor-

tant to ensure good performance of further image processing operation such feature detection.

Kaiming, Jian, and Xiaoou (2011) proposed a single image dehazing method using the dark

channel prior which states that haze-free image contains local region with low intensities in at

least one color channel. Galdran et al. (2015) propose a variant of dark channel prior for un-

derwater environment, the Red Channel method as red color shows most degradation in turbid

water medium. From another perspective, Ancuti and Bekaert (2011) takes a fusion-approach

to recover the original image by generating a few weight maps that correlates with intrinsic

properties of the image itself. A color corrected and contrast enhanced of the input image are

used to generate different weight maps that are fused using a Laplacian multi-scale strategy to

generate a smoothed output image. This method has the benefit of using a single image but

the weight maps must be combined with different weightage to achieve an ideal result.

2.1.2 Color Constancy

Color cue plays an important role to distinguish different objects such as the small cylinders

in Robosub that requires sorting by color. The ability to account for color of the light source

is called color constancy. The work of Gijsenij, Gevers, and Van De Weijer (2011a) analyzes

various color constancy algorithms. Attention is paid especially on low-level statistics methods

that are computationally inexpensive compared to learning-based methods. The Grey-World

(Buchsbaum, 1980) estimate the color of the light source by estimating the average color in the

image assuming that any deviation from average color (Grey) is caused by illuminants. The

White-Patch method (Land & others, 1977) estimates the color of light source by computing the

maximum response in individual RGB color channels. Finlayson and Trezzi (2004) shows that

both Grey-World and White-Patch algorithms are special instantiation of a more general color

constancy algorithm based on Minkowski norm called Shades of Grey. Their investigation of best

illumination estimation suggests using Minkowski norm, p = 6 to obtain optimal performance.
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Though we see new method such as the Color Rabbit (Bani?? & Lon??ari??, 2014) which

combine multiple local illumination estimations to a global one, these class of methods are more

computationally expensive which is not suitable for real-time application. Inspired by primary

visual cortex (V1) of human visual system (HVS), Gao, Yang, Li, and Li (2013a) estimate the

true illuminant color of a scene by computing the maximum response in separate RGB channels

of the responses of double-opponent cells. This method is shown to perform better on outdoor

scenes from Gehler-Shi dataset where the mean reflectance is not achromatic which is assumed

by Grey-World based methods.

2.2 Saliency Region Detection

Ability of human visual system (HVS) to selectively process only the salient visual stimuli,

specifically salient object detection helps to reduce computation time of object recognition that

traditionally relies of sliding-window approach to detect object of interest. Achanta, Hemami,

Estrada, and Susstrunk (2009) estimate centre-surround contrast using color and luminance

features using a frequency-tuned approach to generate high-resolution saliency map. In con-

trast, biological inspired method of (Itti, Koch, & Niebur, 1998) that computes centre-surround

contrast using Difference of Gaussian (DoG) which generates low resolution map and ill-defined

boundaries because of down sampling of original image.Because saliency detection often work

poorly in low contrast environment i.e underwater environment, work of Van De Weijer and

Gevers (2005) boost local color information by analyzing isosalient colour derivatives. Cao and

Cheikh (2010) extended work of Van de Weijer as Gaussian derivatives of each opponent color

to get a better iso-salient transformation.

2.3 Detection Proposals

Relying on saliency mechanism is insufficient in perturbed underwater condition; therefore, dif-

ferent detection proposals algorithms are investigated. Hosang, Benenson, Dollár, and Schiele

(2015) cited that ”detection proposals” which can be grouped into a) grouping proposal meth-
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ods and b) Window scoring proposals methods are used extensively by top performing object

detectors in PASCAL and ImageNet. On top of reduced computation cost by avoiding exhaus-

tive sliding window approach, detection proposals improve recall by filtering out false positives.

Recent work of Winschel, Lienhart, and Eggert (2016) combines top performing detection pro-

posals methods, SelectiveSearch (Uijlings, van de Sande, Gevers, & Smeulders, 2013) and Edge-

Box (Zitnick & Dollár, 2014). Though detection proposals allow for faster object recognition,

it is important that it does not filter out object of interest and incur more computation costs

that out weights time saved.

2.4 Object Detection and Tracking

An overall review of journal papers submitted by top-performing teams in Robosub shows a

general trend of combining surprisingly simple computer vision techniques such as adaptive color

thresholding, edge detection i.e Canny Edge (Canny, 1986), and contour analysis i.e Hu moment

(Hu, 1962). Team CUAUV (Cornell AUV) proposes adaptive color thresholding on different

color spaces such as LAB, LUV and YCrCb where the individual masks are combined to form

final binarized mask. This is a blob-based detection approach where contour generated by

OpenCV’s implementation of (Suzuki & others, 1985) will be matched against known geometric

properties of desired object of interest. Walters, Sauder, Nezvadovitz, Voight, Gray, Schwartz,

and Walters, P and Sauder, N and Nezvadovitz, J and Voight, F and Gray, A and Schwartz

(2014) use particle filter approach to detect and track object of interest. Known for its ability

to deal with non-linear noise and multi-modal hypotheses (Isard & Blake, 1998), particle filter

has the ability to recover from wrongly tracked objects. Though more sophisticated techniques

such as neural-network classification is deployed, teams still generally rely on low-level visual

cues such as color and edge. This may be attributed to simplicity and efficiency of mentioned

algorithms. Benoit, Goulet, Bouchard-d’Haese, Bouzidi, Carrier, Couturier, Desjardins, Dozois,

Fortier, Langlois, Ritchie, and Prévost (2014) focuses on developing sophisticated vision tuning

client that allows for rapid prototyping via ”mix and match” approach to design a suitable

vision pipeline for each individual vision tasks.
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Chapter 3

Design & Methodology

3.1 Proposed design

Though many solutions to underwater vision challenges exist, many of them are not designed

to work with each other as they do not share a common interface. To increase ease of use and

productivity of developers, this paper proposed a vision framework that consists of modular

components tailored for underwater application, and ease of integration to Robot Operating

System (ROS) which are commonly used by the robotics community.

The proposed vision framework is divided into offline modules and online modules. Offline

modules refer to modules that will deployed prior to object tracking mission such as video

annotation, visual data analysis and model learning. In contrast, Online modules are deployed

during mission such as preprocessing, object detection and object tracking.
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Figure 3.1: Proposed vision framework

3.1.1 Offline modules

Video annotation is extremely important for ground truth generation that is essential for

model learning. To achieve rapid ground truth generation with limited manpower and time,

model-free tracking method such as mean-shift by (Comaniciu and Meer (2002)) and correlation-

filter based tracking (Bolme, Beveridge, Draper, and Lui (2010b)). Of course this is under the

assumption that some degree of localization error is acceptable and human intervention is used

to redefine the target window if drift occurs. This enables a faster testing iteration as data

collected can be integrated more quickly to update our model.

Data analysis helps us discover patterns and statistical nature of collected visual data

which is important for feature engineering and model learning. These tools include visualization

of image under different color spaces, estimation of illuminants, saliency map generation and

image quality assessments. This information is used as metadata to label and categorize dataset

to increase productivity of model training and validation. Again, this is an attempt to automate

trivial task that require human attention.

Model Training is divided into several stages such as feature selection, model selection and

hyperparameters optimization. To increase usability of the software without machine learning

knowledge, this paper adopt the trending automatic machine learning approach by leveraging
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on available open-source libraries such as Auto-Sklearn, TPOT, and HPOlib.

3.1.2 Online modules

Preprocessing has considerable effect on accuracy of underwater object detection because

of the challenges mentioned. Color normalization is performed on image to remove effect of

color cast because of light attenuation. Low-level stastical methods have been explored because

they are simple to implement and fast while producing accuracy comparable to other methods

such as gamut mapping and learning methods Gijsenij et al. (2011a). In addition, fusion-

based underwater image enhancement by Fang, Deng, Cao, and Fang (2013) is implemented

to remove haze effect because of back-scattering of light. Following that, various illumination

compensation methods are executed to reduce effect of flickering and adjusting brightness of

the image for more optimal object detection.

Object Tracking is separated into 3 components: a) object proposal, b) object classification

and c) online preprocessing. An adaptive object model and pre-learned object model are ap-

plied to achieve higher tracking accuracy. Object proposals based on superpixel, edge-detection

and saliency are exploited to produce candidates for classification instead of the traditional

sliding-window approach which is more computationally expensive. For object classification of

candidate windows, Support Vector Machine (SVM), Random Forest and Gaussian Process are

the supported classifiers. To improve generalization of the tracker to different conditions, pre-

processing steps are taken to ensure invariance to non-uniform illuminations and underwater

challenges.
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3.2 Methodology

In this section we will explain how these modular components are used together for underwater

real-time object tracking.

Figure 3.2: Main methodology

3.2.1 Generating datasets

Figure 3.3: Dataset generation methodology

Data analysis is performed on all images to further categorize them into different datasets

according to various criteria such degree of haze, existence of shadow, illuminations and color
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cast. Each dataset will be tagged with metadata generated from the analysis. Next, video

annotation is conducted using Mean-Shift tracker on preprocessed images to generate ground

truth that will be used for training and validation. To prevent overfitting and help the model

generalize better, data augmentation via horizontal flipping, scaling, rotating, shifting and color

jittering is performed with the aid of Keras preprocessing module.

3.2.2 Model Learning

Figure 3.4: Model learning methodology

To improve discriminability of objects from background in undewater setting, preprocessing

steps are taken such as color normalization, illumination compensation and image enhancement.

Moving on, different type of features are extracted from various color spaces that will be used

in object classification. Using the validation set, feature selection, model selection and

hyperparameters optimization are executed to determine the most optimal combination of

algorithm-parameters pair for a particular object class.
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3.2.3 Online object detection and tracking

Figure 3.5: Object tracking methodology

The next phase involves real-time object proposals adopting a) superpixel-based clustering

and b) edge detection. Object classifier will rank these candidates according to classfication

score. Tracking is performed using a simple nearest neigbour approach and a new tracker will

be initialized after losing track of the target for 10 frames.
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Chapter 4

Preprocessing

In this section, we will look into detail the preprocessing steps that are applied to each image.

4.1 Color Normalization

For underwater vision challenges, color cues are very important features because other features

like edge, texture and corner have poor visibility underwater because of low contrast. In Robo-

sub, there are several vision tasks that requires classification of different objects based on their

colors. Though color cue is a simple and discriminative feature for underwater object detection,

color feature shows very poor repeatability under varying light source. To achieve consistent

feature extraction, this paper takes a static approach (fixed-parameters) because of simplicity

and our application does not require high degree of accuracy. With the static approach, there

are less parameters needed to be optimized.
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Figure 4.1: Color normalization results (left to right):

Top row: a) Raw input, b) Finlayson’s comprehensive normalization, c) Grey-world

Bottom row: d) IACE, e) Finlayson’s non-iterative normalization f) Shade of Gray

This paper only considers color normalization methods that require single image without

prior information about the camera used. There are 2 main steps to any color normalization

method: a) illuminant estimation and b) image correction. The aim of image correction is to

achieve chromatic adaptation which can be modelled with a diagonal transformation von Kries

(1970) with certain assumptions. The mapping of an image under unknown light source to an

image under canonical light source is performed using a diagonal matrix as shown below:


Rc

Gc

Bc

 =


d1 0 0

0 d2 0

0 0 d3




Ru

Gu

Bu


Results from Gijsenij, Gevers, and Van De Weijer (2011b) suggests that different algorithms

show their strenghts and weaknesses on different datasets. Therefore, this paper proposes a some

color normalization strategies that can be chosen based on performance of object detection on

the validation datasets.
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4.1.1 Algorithm Implementation

Grey-World based

1. Grey-World

With the assumption that: the average reflectance in a scene under a neutral light source

is achromatic Buchsbaum (1980), the colour of the light source is estimatd by computing

the average color in the image.

2. White patch

With the assumption that: the maximum response of RGB channels is caused by the

perfect reflectance Land and others (1977), the colour of the light source is estimatd by

computing the maximum pixel value of each channel separately.

3. Grey-Edge

Instead of using raw pixel value, Van De Weijer and Gevers (2005) makes the assumption

that: the average of the reflectance differences in a scene is achromatic. The illuminant

is estimated by calculating the average color derivative of an image.

4. Shade of Gray

Instead of applying the maximum operation (max RGB) and average operation (Grey-

World) which are both specific instantiation using the Minkowski norm Finlayson and

Trezzi (2004). Grey-World when p = 1 and Max RGB when p = ∞ .

(

∫
(|fx(x)|)pdx∫

dx
)
1
p = ke

Finlayson’s approach

1. Comprehensive image normalization

To remove dependency on lighting geometry, (r, g, b) is normalized to (sr, sg, sb). Effect of

illuminant is removed using grey-world normalization. These two-processes are performed

succesively for 2 iterations (derived from empirical results) Finlayson, Schiele, and Crowley

(1998).
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2. Non-iterative comprehensive image normalizationOperating on the log RGB space,

normalization is performed by subtracting mean of each row and mean of each column

each element Finlayson and Xu (2002).

4.1.2 Improvements

1. Gamma correction

Figure 4.2: Effect of applying gamma correction: (top row) no gamma correction, (bottom row)

with gamma correction

To improve the result of color correction Cepeda-Negrete and Sanchez-Yanez (2012),

gamma correction is applied after color correction to illuminate dark areas in the im-

age (often effect of color normalization) which subsequently increase dynamic range of the

image.

2. LAB color space

Based on the evaluation of Kloss (2009), the CIE LAB color space which reflects lin-

earity of human colour perception is able to better represent transformations for more

subtle colours. Color normalization in LAB space will rarely overcompensate or result in

transformed image that looks unnatural.
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3. Grey pixel

Figure 4.3: Applying novel grey pixel illumination estimation: a) Raw input, b) Color corrected

Yang, Gao, and Li (2015) estimates the illuminant of the scene from information of grey

pixels detected in a color image. It assumes that most of the natural images include some

detectable pixels that are at least approximately grey.Firstly, color image is converted to

logarithm space, followed by calculating the illumination-invariant measure (IIM) which

is calculated from local contrast of each logarithm channels. Then the mean of selected

grey pixels ranked by the Grey-Index will give us the estimated illumination.

4. PCA based

Figure 4.4: Spatial domain based illumination estimation: a) Raw input, b) Color corrected

The work of Cheng, Prasad, and Brown (2014a) estimates the illuminant by finding bright

pixels and dark pixels in a color image. The paper selects colours by choosing n pixels with
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largest and smallest projected distance to the mean vector. Then PCA is performed on the

selected pixels to generate estimated illumination direction.

4.2 Underwater Image Enhancement

Color normalization alone is insufficient to restore the original appearance of an underwater

obstacles. Underwater images also suffer from poor contrast, overexposed or underexposed and

flickering caused by refraction of sun light.

Figure 4.5: Underwater image enhancement results (left to right):

Top row: a) Raw input, b) Dark channel prior, c) Single image fusion

Bottom row: d) CLAHE, e) Red channel prior
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4.2.1 Fusion-based image restoration

Figure 4.6: Single underwater image enhancement by fusion

The work of Fang et al. (2013) suggests enhancement of underwater images using a) white-

balance image and b) contrast equalized image as inputs to generate weight maps (chromatic,

luminance, and saliency). The weight maps are then normalized and fused using image pyramid

approach to produce a smoother enhanced image. The final output can be gamma corrected to

adjust overall brightness of the image.

Chromatic map controls the saturation gain of the enhanced image. Higher saturation

values yield more vivid color. Luminance map helps to balance the brightness of the enhanced

image while Saliency map indicates area of high conspicuity. In other words, saliency map

higlights area that captures attention of the human visual system.

This approach has the added benefit of being extremely computationally fast and simple to

implement compared to other approach such as dark channel prior He, Sun, and Tang (2011).

4.2.2 Denoising & Illumination Compensation

According to the survey by Padmavathi, Subashini, Kumar, and Thakur (2010), filters like

homomorphic filter, anisotropic filter and wavelet denoising filter are necessary to suppress noise,

preserve edge and smoothen underwater image. The vision framework includes the following
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filters:

Figure 4.7: Illumination compensation results (left to right):

Top row: a) Underexposed input, b) Chih’s light compensation, c) Chen’s light compensation

Bottom row: d) Flicker input, e) Homomorphic filter f) Gamma corrected

1. Homomorphic filter

Underwater vision tasks in shallow water are prone to suffer from spatial temporal illumi-

nation patterns. In this case, a homomorphic filter can help to correct non-uniform illumi-

nation and sharpen the image. With the assumption that the high frequency components

of an image is associated with reflectance of the image, a high pass filter is applied on the

frequency domain (removing multiplicative noise) removing the low frequency (flickers).

2. Anisotropic filter

Use in conjuction with the homomorphic filter is the anisotropic filter which smoothens

homogeneous area while preserving edges. The work of Perona and Malik (1990) helps to

reduce small edges generated by homomorphic filter.

3. Illumination compensation

When executing underwater vision tasks, the AUV has to constantly deal with fluctuation

in illumination because of various factors such as position of the sun and clouds. Instead

of relying on manual tuning of camera parameters, some automated light compensation
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is performed on captured image sequence. This is extremely important as an overexposed

or underexposed image lose most of its chromatic information.

Figure 4.8: Comparison between logarithm curve and gamma curve

This paper refers to the work of Chang () for 2 different brightness adjustment algorithms.

Firstly, a logarithm curve is used which obeys the Weber-Fechner law of JND (Just no-

ticeable difference) response instead of a gamma curve which tends to enhance noise in

dark regions.

4.3 Conclusion

The preprocessing stage is one of the most important component for effective underwater object

tracking. Color normalization ensures repeatability of feature extraction for different datasets.

This allow for extracting domain invariant features which can be used for object tracking in

different water environments such as public swimming pool, beach or a man-made lake (venue

of Robosub competition).

However, it is necessary to keep the selection of preprocessing algorithms small to reduce any

overhead on real-time object tracking. Therefore, this paper favors preprocessing algorithms

that are less complex, effectively trading off some degree of accuracy for lower detection latency.
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Chapter 5

Object Proposals

Recently we have seen more state-of-the-art trackers incorpate object proposals as part of their

pipeline Kristan, Leonardis, Matas, Felsberg, Pflugfelder, Čehovin, Vojir, Häger, Lukežič, and

Fernandez (2016), Kristan, Matas, Leonardis, Felsberg, Cehovin, Fernandez, Vojir, Hager, Nebe-

hay, and Pflugfelder (2015). The rise of object proposals which is a segmentation-based can-

didates generation slowly replaces the more traditional sliding window approach which can be

slow when multiscale detection is required.

In addition, object proposals can be thought as a generic object detector which generate

candidate window based on some measure of objectness. Choosing the criteria to measure the

presence of an object is very important and is unique for each domain of application. Object

proposals according to Hosang, Benenson, Dollár, and Schiele (2016) fall into 2 large categories:

a) grouping and b) window ranking.

Grouping proposals leverage on hierarchical segmentation approach to generate overlap-

ping segments with techniques such as a) superpixel grouping (SP), b) solving multiple graph

cut problem (GC) with random seeds or from c) edge contour (EC). On the other hand, Win-

dow scoring proposals only score each candidate window on likelihood of containing an object.

This approach is faster at the cost of lower localization accuracy.

From the mentioned paper, methods that are based on superpixel are not robust towards

illuminatin change while BING Cheng, Zhang, Lin, and Torr (2014b) and Edge-box Zitnick

and Dollár (2014) show promising result because of its machine learning component (random
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forest).

5.1 Algorithm Implementation

Figure 5.1: Different object proposal paradigms

This paper utilizes 4 different object proposals for different type of underwater vision tasks.

Referring to Figure 5.1, detection of color buoys which are largely homogeneous with little edge

information are much better handled with SelectiveSearch Uijlings et al. (2013) approach.

In general, grouping proposals show more promising result than window scoring approach for

all the underwater vision tasks. The additional speed gained from window scoring approach is

almost nullified with the need to sample large amount of windows to achieve decend localiztion

accuracy.

Besides the SelectiveSearch and Edge-box, the following section will discuss custom imple-

mentation of 2 other proposal methods.
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5.1.1 Maximially Stable Extremal Regions (MSER)

Figure 5.2: Object proposals using MSER: a) Buoy task, b) Coin task, c) Set date task

Since most the underwater obstacles are blob-like , this paper uses the implementation of

Forssén (2007) by OpenCV to extract candidate windows for object detection. Firstly, the

image is converted to HSV color space. The Saturation channel is then used for blob-detection

as most underwater obstacles have more vivid color compared to the background. Alternatively,

a combination of different color channels are explored to generate more segments such as L*a*b

and YUV.

5.1.2 Saliency-based

Object proposals based on salient cues are also explored as they mimic closely how human visual

system works. Without any preprocessing, the results of salient object proposal is mediocre at

best compared to the other proposal methods. However with appropriate color normalization

and enhancement, this method can produce results that can rival with SelectiveSearch and

Edge-box in this domain of application. This paper use an open-source implementation of:
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Figure 5.3: Object proposals using saliency approach

1. Saliency optimization from robust background subtraction Zhu, Liang, Wei, and

Sun (2014)

2. Minimum Barrier Salient Object Detection at 80 FPS Zhang, Sclaroff, Lin, Shen,

Price, and Mech (2015)

3. Frequency-tuned Salient Region Detection Achanta et al. (2009)

5.2 Conclusion

In this section we have explored different proposal methods that are state-of-the-art and others

(MSER and saliency) that are slightly different from available literatures. Though MSER

managed to generate a lot of segments, this method does not measure the quality of each

segment unlike Edge-box. Salient object proposals on the hand produce candidate windows that

are highly accuracte but with very few segments. In general, not missing any possible object

candidate is more important than generating highly accurate candidate window. Therefore,

this paper propose to lower the threshold for saliency-based proposals in order to generate more

candidate windows.
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Chapter 6

Feature Design

Large amount of feature detector and descriptors used for this projects are available in OpenCV

or Scikit-image. This paper has come to this list of features based on the benchmarks by Lee,

Jeon, Yoon, and Paik (2016) and Pieropan, Björkman, Bergström, and Kragic (2016). Below is

a summary of features available in this vision framework:

1. SURF Bay, Tuytelaars, and Van Gool (2006)

2. SIFT Lowe (1999)

3. BRISK Leutenegger, Chli, and Siegwart (2011)

4. ORB Rublee, Rabaud, Konolige, and Bradski (2011)

5. FREAK Alahi, Ortiz, and Vandergheynst (2012)

6. MSER Forssén (2007)

7. DAISY Tola, Lepetit, and Fua (2010)

8. CenSure Agrawal, Konolige, and Blas (2008)

9. LBP Ojala, Pietikainen, and Maenpaa (2002)

10. AKAZE Alcantarilla and Solutions (2011)

11. Inner Shape Context Ling and Jacobs (2007)
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12. Elliptic Fourier Feature of Closed Contour Kuhl and Giardina (1982)

13. Histogram of Oriented Gradient Dalal and Triggs (2005)

14. Hu moment and Zernike moment Sabhara, Lee, and Lim (2013)

6.1 Requirements

There are various desired properties of features for underwater object tracking in particular

ones that are highly applicable in the competition setting of Robosub competition.The 2 main

properties are: a) repeatability and b) discriminability. Firstly, it is important that we are able

to consistently extract the same set of features for the same object in order to achieve consistent

detection. However, there is always a trade-off with discriminability as features that are highly

repeatable tend to describe a more general representation of the object.

6.1.1 Illumination invariance

It is preferable to have features that are highly invariant to sudden changes in illumination as

the operational depth of the AUV during the competition is still susceptible to external factors

such as position of the sun and clouds.To achieve this, this paper propose usafe of multiple

illumination invariation color space to describe appearance of the object.

6.1.2 Scale & Rotation invariance

Secondly, the feature must also be scale and rotation invariant because the AUV will be con-

stantly navigating around its surrounding to identify object of interest. The easies way to achieve

this is to rely on purely color-based feature that will be mentioned in section 6.2. Color-based

features are easier to compute and are less computationally expensive compared to features like

SURF, SIFT and HOG.
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6.1.3 Shape discriminability

Figure 6.1: Objects with similar colors

Color-based features alone are not sufficient for our application as there exists objects of similar

color appearance. In this case, we will need shape descriptors that will be elaborated in section

6.3.

6.2 Color space: Implementation

Besides the usual color spaces, this section will look at some implementation of color spaces

based on these papers on the subject:

1. Detecting salient cue through color-ratio Todt and Torras (2004)

2. Color Invariants for Person Re-identification Kviatkovsky, Adam, and Rivlin (2013)

3. Evaluation of Color Descriptors for Object and Scene Recognition Van De Sande, Gevers,

and Snoek (2010)

4. Invariant color descriptors for efficient object recognition Sande and others (2011)

5. A Perception-based Color Space for Illumination-invariant Image Processing Chong, Gortler,

and Zickler (2008)
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6. Illumination invariant color model robot soccer Luan, Qi, Song, Chen, Zhu, and Wang

(2010)

7. Illumination invariant imaging Maddern, Stewart, McManus, Upcroft, Churchill, and

Newman (2014)

8. Color Model Double Opponency Gao, Yang, Li, and Li (2013b)

6.2.1 rg chromacity

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B

6.2.2 Normalized RGB

r =
R− µ(R)

σ(R)
, g =

G− µ(G)

σ(G)
, b =

B − µ(B)

σ(B)

6.2.3 Opponent color space

O1 =
R−G√

2
, O2 =

R+G− 2B√
6

, O3 =
R+G+B√

3

Wo1 =
O1

O3
,Wo2 =

O2

O3

6.2.4 Log color ratio

L1 = log
R

B
,L2 = log

R

B
,L3 = log

G

B

6.2.5 RGBY opponent space

Ro = R− G+B

2
, Go = G− R+B

2
, Bo = B − R+G

2
, Yo =

R+G

2
− |R−G| −B

6.2.6 DCD: Dominant color descriptor

Convert to LUV color space or any other perceptually unifrom color space. Perform K-mean

clustering and return the percentage of pixels and variance of each color centers.
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6.3 Shape descriptors

6.3.1 Inner shape context

Figure 6.2: Dashed lines denote shortest path withint the shape boundary

Inner-distance is defined as the length of the shortest path between landmark points within the

shape silhouette. Inner distance is used instead of Euclidean distance when building the shape

context. This is an improvement over the traditional shape context as it is able to describe

more complicated shapes.

6.3.2 Elliptic Fourier Feature of Closed Contour

A chain-encoded closed contour is first obtained using OpenCV’s findContour. Normalization

of Fourier’s coefficients using various elliptical properties of the coefficients. This descriptors

obtained are invariant to rotation, dilation and translation of the contour.

6.3.3 Moment-based descriptors

The vision framework includes 2 common moment-based descriptors: a) Hu Moment and b)

Zernike Moment. According to the evaluation by Sabhara et al. (2013), Zernike’s moment is

more robust and flexible as one can varies the order of polynomial to describe more complex

shape. Furthermore, the Pseudo-Zernike’s moment which more robust to noise is also part of

the supported shape descriptors.

In addition, simpler contour properties can also be used if the target of interests consist of

basic shapes that are largley different from each other. These properties include:

1. Eccentricity

Fit a bounding box over the closed contour to obtain the lenght of major axis and length
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of the minor axis.

Eccentricity =
Lmajoraxis

Lminoraxis

2. Circularity ratio

Calculates the ratio between the area of original shape and area of its enclosing circle.

Circularity =
Areashape
Areacircle

3. Rectangularity

Similar to above, this calculates the ratio between area of the original shape and area of

its enclosing rectangle.

Rectangularity =
Areashape

Arearectangle
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Chapter 7

Model Learning

The primary classifiers for object classification include: a) SVM, b) Random Forest, and Gaus-

sian Process. These classifiers are selected primarily because we have small amount of data as

availability of undewater data are quite limited and can be very expensive to collect. Neural

network and its more popular sibling: Deep Neural Network is largely ignored because of a)

scarcity of data and b) many parameters tuning are needed. In addition, this vision frame-

work hopes to achieve comparable accuracy in underwater object tracking relying more simple

features and less parameters intensive tuning from human experts.

Figure 7.1: Gaussian process

Gaussian process (GP) Rasmussen (2006) is introduced because of its unique ability to

perform feature selection using a covariance function that implements automatic relevance de-

termination. A GP model also provides uncertainty scores of each classification and a prior

knowledge can be integrated easily into its prior function. One major downside of GP is defi-

nitely its O(n3) complexity which makes it a poor choice for large amount of data.

The following section will focus more on the effort to apply the automatic machine learning
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principle which aims to automate trivial machine learning tasks such as feature selection, model

selection and hyperparameters optimization. Most of these algorithms are open-source and are

readily available, this paper merely tries to integrate it as part of the framework to remove the

dependency on machine learning experts for trivial tasks.

7.1 Feature Selection

Having multiple features is advantageous to allow for greater adaptation to different challenging

environments. For instance, detection of a textureless object can be challenging using the

popular HOG feature while a simple color histogram can produce a better result. This paper

would like to highlight that choosing the right feature can improve accuracy and reduce needless

computational cost from using complex feature descriptors like SIFT. In addition, choosing best

features also reduce dimension of feature which is a problem on small AUV equipped with less

powerful computing unit.

Besides using the Automatic relevance determination of a GP model, this framework lever-

ages on the widely used machine learning library, Sklearn’s feature selection module. Below is

the list of feature selection functions used in the vision framework.

1. Removing feature with low variance

This approach removes features that are below certain variance threshold labelling it as

redundant.

2. Univariate feature selection Univariate test such as F-test and chi-test are used to

select the best features before training the model.

3. Tree-based Uses an ensemble model (forest of trees) to calculate feature importances

which is used to score input features.

7.2 Hyperparameters optimization: Implemetation

Uses HPOlib which contains 3 libraries for hyperparameter optimizations:
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1. Sequential model-based optimization Hutter, Hoos, and Leyton-Brown (2011)

2. Spearmint Bayesian optimization codebase Snoek, Larochelle, and Adams (2012), Swersky,

Snoek, and Adams (2013), Snoek, Swersky, Zemel, and Adams (2014), Snoek (2013),

Gelbart, Snoek, and Adams (2014)

3. Hyperopt

Ideally, there are very few hyperparameters optimization needed as the paper actively tries

to use non-parametric methods with the exception of SVM (choice of kernel and misclassificatin

penalty).

7.3 Model Selection

For model selection, again Sklearn’s model selection and evaluation is used to select the best

model for a particular tasks through cross-validation. From our observation, the performance

of each classifiers does not varies very much. In addition, this paper also experimented with

Auto sklearn Feurer, Klein, Eggensperger, Springenberg, Blum, and Hutter (2015).
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Chapter 8

Object Tracking

This section will explore different tracking paradigm Stalder, van Gool, and Avidan (2012) and

analyze various surveys conducted to determine the best trackers for underwater visual tracking.

Because of the tracking strategy, only single object tracking algorithms are evaluated. There

are few reasons why the paper proposed a single object tracking approach:

1. Simpler implementation

2. The AUV has limited number of manipulators which make it possible of manipulating

only a single obstacle at a time

3. Less computationally expensive

8.1 Benchmarks

As for the benchmarks, the paper looks into the papers listed below:

1. Visual object tracking performance measures revisited Čehovin, Leonardis, and Kristan

(2016)

2. VOT 2016 Challenge Results Kristan et al. (2016)

3. VOT 2015 Challenge Results Kristan et al. (2015)

4. Is my new tracker really better than yours ? Čehovin, Kristan, and Leonardis (2014)
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The top trackers almost always combine an adaptive tracking and a fixed-model tracking

approach. Online model update techniques such as Adaboost and Multiple Instance Learning

are capable of adapting to different conditions as positive samples are sampled around vicinity

of tracked object while negative samples are extracted from background of the image. However,

adaptive model update comes at the cost of computational cycle and also more complicated

model.

8.2 Tracking by detection: Implementation

Figure 8.1: Tracking pipeline

This paper utilizes a tracking by detection approach as detection is performed on each frame

and associated with previously tracked objects. A tracker is terminated when an the tracker

loses track of its target for at least 10 frames. This value is determined through empirical

evaluation of applying the tracker on existing image sequence. To handle multiple instance

of the object, the object with the shortest Euclidean distance will be selected. In addition,

association of object with previously tracked object is bounded on a specific radius to reduce

false positives with the assumption that the AUV is perfectly stable and does not move randomly

over a short period of time.

Prior knowledge such as geometric property of the target can be included through a weighted
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summation of classification score and prior score. With more context, a more accurate detection

can be achieved.

8.3 Model-free tracking: Implementation

In addition to the main tracking strategy mentioned above, model-free tracking algorithms

based on correlation-filter are also included for: a) rapid data collection and b) tracking generic

object. These algorithms include:

1. High-speed kernelized correlation filter Henriques, Caseiro, Martins, and Batista (2015)

2. Visual Object Tracking using Adaptive Correlation Filters Bolme, Beveridge, Draper, and

Lui (2010a)
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Chapter 9

Experimental results

9.1 Datasets

The datasets are generated and categorized using the sequence annotator, AIBU which is used

by the Visual Object Tracking (VOT) committee. There are total of 6 datasets with different

set of challenges. At the same time, 6 object classes will be tested.

9.1.1 Challenges

Figure 9.1 and 9.2 are the datasets labelled with bounding box ground truth used for evaluation

of the proposed tracker.
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Figure 9.1: Dataset 1

Figure 9.2: Dataset 2

9.1.2 Object classes

The objects to be tracked composed of:

1. Red buoy

2. Green buoy

3. Yellow buoy
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4. Set date cover

5. Red Coin

6. Bin cover

9.2 Results

9.2.1 Evaluation methodology

Using Visual Object Tracking (VOT15) Kristan et al. (2015) as guideline, following are the

performance measures used:

1. Accuracy, A

Accuracy is measured the average overlap of predicted bounding box with the ground truth

bounding box. Accuracy for a sequence is obtained by averaging per-frame accuracies.

2. Robustness, R

Robustness measures how many times the tracker loses the target (overlap is zero). The

tracker is reinitialized 10 frames after the failure. Again, robustness of a sequence is

calculated using the average failure rate.

3. Frame per-second, FPS This is a naive measure of speed by calculating the average of

FPS of the tracker over different datasets.

9.2.2 Trackers

The competing trackers can be categorized into 2 big categories: a) variations of proposed

tracker and b) open-source trackers. The baseline tracker is our proposed tracker without any

preprocessing, using only color thresholding along with contour properties. Below is the list of

trackers:
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Trackers

Baseline

Baseline + preprocessing

Baseline + preprocessing + automl

MOSSE

KCF

EBT (Edge Box Tracker)

Table 9.1: Competing trackers

It is to be made known that only minimal preprocessing such as smoothing and denoising

are performed when using open-source trackers. This is to ensure that the inputs are not

too perturbed with noise. This makes sure that the state-of-the-art trackers are not at a big

disadvantage compared to our proposed trackers.

9.2.3 Raw results

Trackers Accuracy Robustness Speed

Baseline 0.21 7.23 200

Baseline + preprocessing 0.34 6.11 50

Baseline + preprocessing + automl 0.53 2.53 50

MOSSE 0.30 8.10 100

KCF 0.35 4.91 70

EBT (Edge Box Tracker) 0.41 3.11 43

Table 9.2: Raw results across all datasets
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9.3 Discussion

9.3.1 Preprocessing

Both correlation filter based trackers, KCF and MOSSE performed poorly for the illumination-

dataset while our proposed tracker managed to consistently track the object of interest. EBT

on the other hand showed poor performance in both overexposed and low contrast datasets as

the edge information is barely visible. For the size change dataset, KCF and EBT in particular

shows the best performance. This is to be expected as these trackers did show promosing result

in VOT15. The baseline tracker without any preprocessing performed miserably in almost all

datasets. However, with added preprocessing, the basline tracker is able to achieve decent

accuracies for datasets without any complex shapes.

9.3.2 Automatic machine learning

The result for performing feature selection showed promising result as it is able to perform

up to par with some of the state of the art trackers such as EBT and KCF. However, it has

to be mentioned that these trackers with preprocessing are able to outperform the proposed

tracker. This goes to show the importance of preprocessing when performing object detection

in underwater environment.

9.3.3 Conclusion

Looking at the Table 9.2, one can conclude the importance of preprocessing for underwater

object tracking because the accuracies achieved by state-of-the-art trackers do not justify their

ranking in VOT15. Our proposed tracker which combines both preprocessing and automatic

machine learning approach is able improve the baseline accuracies by leaps and bounds without

needing to really complex feature representations.
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