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Abstract

In this report I present the design and development of core software com-
ponents that run on board an Autonomous Underwater Vehicle (AUV) and
Autonomous Surface Vessel (ASV). To achieve the ultimate goal of demon-
strating autonomous launch and recovery (LARS) of the AUV from the ASV,
we first develop the navigation and control system. First, a suitable under-
water simulation stack is developed and the derivation of the hydrodynamic
model is detailed. Second, the simulation stack is used to test the control
system and a simple proof of concept neural network based real time PID
tuner is developed. This enables the PID controller to adapt its constants to
changing environmental conditions, particularly wind. Off the shelf sensors
used in inertial navigation is benchmarked and compared. The inertial navi-
gation system used on two separate vehicles was dismantled and re-developed
as an Error State Kalman filter that dynamically adapts to either GPS, Cam-
era, USBL or DVL observations. Real world test results are showcased and
analyzed.

Subject Descriptors: Keywords:

Kalman filters and hidden Markov models
Physical simulation
Robotics

robotics, kalman, inertial navigation, control systems, underwater simu-
lation

Implementation Software and Hardware:
Linux x64, Armv8hf, C++, BumblebeeAUV 3.5, Bumblebee ASV 1.0
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Chapter 1

Introduction

Exploring the underwater world is a hard challenge. The sea is harsh and

unpredictable. It is a very risky process to send humans underwater, due

to the extreme pressures and temperatures involved. Although not safe for

humans, it is completely safe for robots to do repetitive and time consuming

work out in the sea. Usual tasks include survey operations, sample collection,

blackbox recovery for downed aircraft and biological and research trips.

Recently there has been a lot of interests in mapping out the ocean floor,

mining for underwater resources and other long term commitments. Au-

tonomous vessels are sought after in this industry as they simultaneous make

it safer for the man power involved and speed up the process. One of the

biggest drawbacks of AUVs has always been its battery capacity and time

underwater. Certain missions spent half of the battery pack just getting in

position from either a ship or shore.

This is where the motivation for using autonomous surface craft comes in
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as well. Ships are expensive to maintain and to run, in addition to further

risk of personnel. Surface craft can carry an AUV to its position, maintain

position via use of GPS and provide transducers for navigation baselines,

data transfer to shore and even charging.

Bumblebee ASV was purchased almost years ago to take part in the

Maritime RobotX 2016 in Hawaii. The boat will be taking part in RobotX

2018 in which launch and recovery of a submersible is a major factor. Not

considering competition, the plan was to work on it and achieve complete

autonomous launch and recovery by the end of this year. Due to competition

schedules, manufacturing and design and other constraints, the timeline was

pushed back to December 2018.

There are other teams that are also trying to achieve launch and re-

covery, particularly from companies like Kongsberg and other university

groups[rauch2008ship].

Navigational accuracy is a determining factor in if we are confident of

letting the AUV go without a tether. Of course, a tether has other uses

such as streaming high quality camera data. Companies such as Teledyne

and Sondardyne (amongst others) have off the shelf solutions that provide

high navigational accuracy. They however use a fiber optic gyro and other

sensors1 such as USBL (ultra short baseline) and LBL (long baseline). LBL

provides millimetre precision[whitcomb1999combined] but it takes very

long to set up and requires transponders to be set and calibrated at precise

1From the product datasheet
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locations.

The option to interface USBL with our existing filter will be provided for

the future but for us dead reckoning based positioning accuracy is important

to remain competitive with respect to cost amongst other considerations such

as size and weight.

One of the other biggest problems that we faced in Hawaii was the wind.

Our boat only had two thrusters back then and we could not station keep.

To counter that, we have moved to vectored thrust and that is also the moti-

vation behind exploring adaptive schemes of control for the boat. University

of Florida took the same course of action by going vectored thrust with

4 trawling motors[graynavigator] and using a Model Reference Adaptive

Controller. UF has also attempted the use of an underwater vehicle from

their boat[gray2016anglerfish].

As our boat gets quicker to competition more topics can be explored

tested and implemented for competition as well as real world scenarios.
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Chapter 2

Frame Definition and

Transforms

2.1 Quaternions and Notation

Quaternions form a system that extends the complex number system. Com-

plex numbers of unit length can encode rotations in the 2D plane. Likewise,

extended complex numbers can encode rotations in 3D space. Quaternions

are represented by a real part (scalar) and the imaginary part [Eberly2002].

Q = qw + qxi+ qyj + qzk

i2 + j2 + k2 = −1 = ijk

There are two frequently used representations for quaternions1: Hamil-

1There exist others: ESA, ISS, etc;
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tonian and JPL. Hamiltonian quaternions are usually denoted as

[
qw qv

]T
with the real part in the front. The corresponding JPL notation is

[
qv qw

]T
.

The Hamiltonian notation is used for quaternions throughout this report as

it is the represented used by the C++ linear algebra library Eigen and Robot

Operating System both of which are used heavily onboard our platforms.

Compared to rotation matrices that can also encode rotation in 3D space

which requires 9 doubles to store the corresponding quaternion representa-

tion only requires 4. This offers significant savings in bandwidth when used

streaming high frequency odometry data.

Composition of frames (combining two rotations) usually requires matrix

normalization to hold the rotation matrix orthogonality constraint RRT = I.

When composition is performed using numerical methods, the constraint is

usually broken by rounding errors particularly so when using single preci-

sion floating point arithmetic. Matrix renormalization is a computationally

expensive process requiring computation of the singular value decomposi-

tion and replacing the singular values with ones[Horn2008] . On the other

hand, quaternion normalization is an inexpensive process with most libraries

providing the functionality out of the box:

qU =
q

||q||

||q|| =
√
q2w + q2x + q2y + q2z
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2.2 Frames

2.2.1 world

World fixed frame with its z-axis pointing upwards. The world frame is also

aliased as the map frame. The world frame is globally referenced with the

help of GPS and time variant drift is not expected or at least, expected to

be negligible

2.2.2 local

The local body frame is the reference to which any strap down inertial nav-

igational sensors are mounted to the vehicle with.
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Chapter 3

Underwater Simulation

An existing underwater simulator[prats2012open] which has not been main-

tained was fixed up and used for simulation of the AUV and ASV. Underwater

Simulator (UWSim) is written in C++ using the OpenSceneGraph libraries.

It has existing integration with Robot Operating System and Gazebo.

3.1 Simulation of an IMU

3.1.1 Angular Velocity

UWSim does not come with a functioning simulated IMU sensor. We can

however obtain the orientation of the model from OSG as a quaternion. This

quaternion can then be perturbed with normally distributed noise with a

specified standard deviation.

The quaternion orientation q is a curve q : I → S3 ∈ R4 where the

quaternion is represented as a 4 dimensional vector. We can hence compute
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the time derivative as explained in [chou1992quaternion]

q̇(t) =
d

dt
q(t) = lim

h→0

q(t+ h)− q(t)
h

(3.1)

and for small δ can be approximated by

q(t+ δ)− q(t)
δ

Since S is a Lie group the angular velocity associated with q(t) as

q̇(t) =
1

2
q(t) ?

 0

ω(t)

 (3.2)

where ? is quaternion multiplication. Rearranging we can see that

ω(t) = =(2 ¯q(t) ? q̇(t))

where = extracts the imaginary part out (vector) and q̄ represents the con-

jugation.

Substituting (3.1) we have the equation

ω(t) = =(2 ¯q(t) ? lim
h→0

q(t+ h)− q(t)
h

)

= =(2 lim
h→0

¯q(t) ? q(t+ h)− ¯q(t)q(t)

h
)

= =(2 lim
h→0

¯q(t) ? q(t+ h)

h
)

where for small δ we have ω(t) = 2 ¯q(t) ? q(t+δ)
2

For numerical computation the quaternion state without noise is used and

normally distributed noise is added to the angular velocity obtained later.
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3.1.2 Acceleration

The transform for a rendered object in the world frame can be obtained from

the OpenSceneGraph API. The acceleration can then be computed by double

numerical differentiation from two different positions of the object for small

δt

Normally distributed guassian noise is introduced to the calculated vector.

3.1.3 Magnetometer

A magnetometer measures the direction and field strength of a magnetic field.

Given a world frame position fix in LLA1 and the time, the corresponding

field vector is obtained using the World Magnetic Model. The vector is

rotated to the local frame and perturbed with a scale and bias factor.

Magnetometers are often inaccurate and affected by many factors, most

commonly ferromagnetic structures and even the electromagnetic fields gen-

erated by the carrying vehicle. This feature is not implemented and is left

for future improvement.

3.2 Simulation of a DVL

A DVL is a sensor that measures the speed relative to the seabed or relative

to the flow of water (Acoustic Doppler Current Profiler mode). The sensor

reading that it gives is relative to the body frame of the vehicle. We can get

1Latitude, Longitude, Altitude (above sea level)
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the transform for the position of the object relative to the OSG world.

v(t) = Rb
wv(t)

The velocity can be obtained by numerical differentiation with added

guassian noise.

The sensor measures velocity by sending out four beams of sound at an

angle θ from the center of the sensor head. This is called the Janus angle

and it varies from as little as 10 deg to 30 deg. The matrix that is formed

from the system of equations that relate beam velocities to ENU velocities

is given by[Gilcoto2009]

TDV L =



− sin θ 0 − cos θ

sin θ 0 − cos θ

0 sin θ − cos θ

0 − sin θ − cos θ


(3.3)

and given velocity v in body frame (ENU) we can obtain beam velocities

by multiplication



b1

b2

b3

b4


= TDV Lv

We can transform a 4 beam solution back to the ENU frame using a least

squares fit (T TT )−1T T b
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3.3 AUV Dynamics

The calculation of AUV dynamics is important as its lets us test the control

system within the simulator. It also lets the mechanical team approximate

the dynamics of the AUV by using calculated constants from SolidWorks.

The dynamic model of the AUV as represented by [yuh1995underwater]

is given by

MV̇ + C(V )V +D(V )V +G = τ (3.4)

where V is the velocity state vector

[
v ω

]T
, M is the mass inertia

matrix, C(V ) is the coriolis and centripetal matrix and D(V ) is the hydro-

dynamic damping matrix. τ is the external force and torque input vector.
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3.3.1 Constants

The constants for BBAUV 3.5 as obtained from SolidWorks and measure-

ments in the lab are given below

M = 56

nact = 8

Cg =

[
0.47 0.68 0.85

]T

I =


4.86 0.01 0.01

0.01 4.59 0.12

0.01 0.12 0.94


O = 0.02m3

Cg is the center of gravity, I holds the moments of inertia, O the volume

displaced and we have 8 actuators. It is observed that the center of gravity

is off but the moments of inertia matrix is symmetric around the diagonal

with minimal off diagonal terms. If there are significant off diagonal terms

any rotational motion will be unstable[nahon1996simplified].

3.3.2 Allocation Matrix

Allocation matrix is ndof ×nact and calculates the force that the AUV exerts

in its 6 dof: surge, sway, heave, roll, pitch and yaw as a response to actuator

input.
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l1 0.250

l3 0.500

Table 3.1: Thruster positioning in m

L =



1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 1 1 1 1 0 0

0 0 −l3 l4 −l3 l4 0 0

0 0 −l5 −l5 l6 l6 0 0

−l1 l2 0 0 0 0 −1 1


(3.5)

where l1 = l2 is the distance from the center line of the AUV to Videoray

thrusters and l3 = l4 is the distance from the cetnter line of the AUV to the

seabotix thrusters. The numbers obtained from SolidWorks is given in the

table 3.1

The force obtained in each of the dof can then be computed if we have

thruster input vector u as Lu.

3.3.3 Thruster Measurement

On the AUV and ASV we cannot command the actuator based on the amount

of force it outputs but rather using a mapping on the discrete integer interval

between [-1600, 1600] for surge thrusters and [-3200, 3200] for others. This

corresponds to the duty cycle of the output PWM. A thruster measurement

jig was constructed to measure the bollard pull or the single axis force ob-
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tained from the thruster. The obtained results in were then curve fitted to

obtain the input vs output (force) curve.

We can observe that

• The thrusters are highly non-linear

• Curve fitting for both forward and reverse as a single function gives

bad fit with R value < 0.92

Thus a piecewise function was used to model the thrusters and is given

below

Fv(x) =


−4.308× 10−10x3 − 1.214× 10−6x2 + 0.0003757x x ≤ 0

−1.49× 10−10x3 − 3.88× 10−7 + 0.0035x x > 0

(3.6)

and for seabotix thrusters

Fs(x) =


2.5× 10−11x3 − 1.84× 10−08x2 + 1× 10−5x x ≥ 0

−2.72× 10−12x3 − 7.32× 10−08x2 x < 0

(3.7)

The thrust curves are visualized in figures 3.1 and 3.2. It is immediately

obvious that the Videoray Pro 4 is significantly more non-linear than the

Seabotix thruster.

For use in the dynamic model of the AUV, we have thruster command

vector u which is the output from the PID controller. The above obtained

functions are then mapped column wise onto the vector before multiplication

with the allocation matrix.

14



Figure 3.1: Seabotix Thrust Curve

Figure 3.2: Videoray Thrust Curve
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3.3.4 Mass and Inertia Matrix

The mass and inertia matrix M is composed of Mrb the mass and inertia for

a rigid body and MA, a hydrodynamic added mass.

M = Mrb +MA

Mrb =



m

m [−m ∗ Cg]×

m

Ixx Ixy Ixz

[m ∗ Cg]× Iyx Iyy Iyz

Izx Izy Izz


where Cg is the center of mass, and × is the anti skew symmetric matrix.

We can approximate the hydrodynamic added mass as half of the original

mass. According to literature[Vervoort2009] the value lies between 10% to

100% of the corresponding parameters in Mrb ; thus

MA =



m
2

m
2

m
2

0

. . .


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3.3.5 Coriolis and Centripetal Matrices

We can then compute the coriolis matrix which is used to analyze forces

applied on the rigid body under rotation.

C(V ) =



0 . . . 0

... −[s1]×

−[s1]× −[s2]×


where

s1 = Mv + [mCg]×ω

s2 = [−mCg]×v + Iω

I is the second order inertia matrix and not the identity matrix. The

derivation of the Coriolis matrix is given in [Vervoort2009].

3.3.6 Hydrodynamic Damping Matrix

The hydrodynamic damping matrix which contains the drag and lift forces

can be separated into a linear and quadratic term but we can discard the lift

force assuming our vehicle or the current its facing is not very high.

Both the linear and quadratic terms can be represented as diagonal 6x6

matrices where

X =
1

2
ρCdAf

17



D(V ) =



X 0

Y

. . .

K

. . .


+



Xu|u|vx|
. . .

Kp|p|ωx|

0
. . .


3.3.7 Buoyancy and Force due to Gravity

W = mg

B = ρgO

where d is the density, r is the radius and O is the volume displaced by the

AUV. The force associated G can be calculated by[Vervoort2009]

G =

 Rw
b

[
0 0 W

]T
−Rw

b

[
0 0 B

]T
cg ×

[
0 0 W

]T
− cg ×

[
0 0 B

]T


Bumblebee AUV is meant to be 1% positively buoyant. However, from

examination of the buoyant force and gravity acting on the rigid body num-

bers from SolidWorsk it is negatively buoyant by 348.27N2. The mismatch

is often corrected with buoyancy foam. We can hence tune the volume dis-

placed in the simulator or work with the depth controller to maintain depth.

In the default state however, the vehicle is expected to sink.

2Taking volume displaced as 0.02 m3
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3.3.8 Currents and Wind

We can extend (3.4) and direct the current velocities obtained from the simu-

lator as[do2009control]. The disturbances can be mapped directly to body

frame for ease of computation when testing control systems. However, when

teh disturbances are obtained from UWSim, we need to transform it from

world to body frame before applying it to eq (3.4)

MV̇ + C(V )V +D(V )V +G = τact + τwind + τwave (3.8)
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Chapter 4

Control System

4.1 PID Controller

Both Bumblebee AUV and ASV run on closed loop Proportional Integral

Derivative controllers. There is one PID loop per degree of freedom. The

thrusters are shared according to the thrust allocation matrix shown in (3.5).

The PID equation can be described mathematically as [astrom2010feedback]

O(t) = Kpe(t) +Kd
de

dt
+Ki

∫ t

0

e(τ)dτ (4.1)

where τ is the variable of integration (integrates over the history) and e(t)

is the error associated e = s − i where s is the setpoint and i is the sensor

input.

20



4.1.1 Proportional Constant

The proportional constant Kp produces basic output in response to error.

It controls the proportional gain. If the gain is too high we can see heavy

oscillation. If the gain is too low, the controller fails to achieve its setpoint.

4.1.2 Integral Constant

The integral term is used to control the magnitude and duration of the error,

often steady state error. If a controller fails to achieve the setpoint due to

physical or actuator limits or stabilizes with an offset to the setpoint, the

integral controller accumulates the error every time step and increases the

output value. The integral term is clamped to a realistic value to account

for physical limits on the actuators.

Windup protection

Integral windup occurs when a large change in setpoint occurs. Real world

actuators do not act instantaneously and accumulate integral term errors

even before they reached the setpoint. The previously implemented clamp

counter acts windup as well.

Windup can be prevented by ramping up to the setpoint slowly preventing

buildup of integral error[astrom2010feedback] . This can be considered for

future versions especially for depth control.
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4.1.3 Derivative Constant

The derivative constant acts on the rate of change of the response. This in

turn determines the stability of the system and helps cut down oscillations.

4.1.4 Tuning and Real World Use

On Bumblebee AUV all degrees of freedom except the depth controller usu-

ally do not require integral control and work on just proportional and deriva-

tive terms. This differs from industrial statistics in which a proportional

integral controller is preferred.

The tuning of the controller is done by hand following the Ziegler-Nichols

method[ziegler1942optimum][astrom2010feedback]

1. Turn off Kd and Ki

2. Increase Kp till the controller can achieve the setpoint within a reason-

able period of time

3. Observe the overshoot and oscillations and introduce Kd to correct

them. Note that Kd will often also cause oscillations when used in

excess.

4. If there is a clear steady state offset between the setpoint and the

input, and the controller is not oscillating or even attaining the setpoint,

introduce Ki

22



4.1.5 Tuning UI

A graphical user interface to tune the above developed PID controller was

developed. The UI uses qcustomplot together with Qt 5.6 (C++) to achieve

simultaneous high frequency plotting of all 6 dof in the same window. Having

all the control loops in the same window is useful as tuning one loop may

introduce disturbances to another, particularly because multiple thrusters

are sharing certain degrees of freedom.

Figure 4.1: Control Systems Tuning UI

The tuning UI is shown in 4.1 and adapted to both the AUV and the

ASV.
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4.2 Adaptive PID Controller

Closed loop PID controllers work well in real world conditions even when we

have no system identification or modelling done[astrom2010feedback] . It

requires tuning of parameters by hand and is described in the section above.

An AUV running a hand tuned PID system has worked well for us in pool

environments.

On the surface craft however, the PID controller performed badly every

time there was a significant environmental disturbance such as the wind.

Underwater, this would correspond to currents albeit in a very simplified

manner. Currents are more homogeneous and the AUV should be able to

keep up given power enough actuators.

In this section we will talk about an implementation of an adaptive PID

controller using a simple neural network.

4.2.1 Feature Extraction

Equation (4.1) shows the output of a PID controller as a function of the error

and the three constants. As such, we will try to extract three features from

the resultant signal that indicate the quality of the three PID constants.

Rise Time

The rise time of the PID controller is the time t that was taken for the sensor

reading to have changed from the original value to when it has achieved the

set point. We only consider the raw time t taken till the set point crosses
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and not time to settle.

Periodicity

The process oscillation period with respect to gain used can be identified

using the discrete Fourier Transform. We first take n samples of the response

from the closed loop controller and compute the Fourier transform

F (x) =
1

n

n−1∑
t=0

s(n)e−i2π
kn
n

Even for most real valued functions, the Fourier transform is complex and

thus F (x) is composed as

F (x) ∼ <(x) + =(x)

which can be used directly as the feature set without extracting the bin

with the highest number of elements. The feature set is thus

{<(x),=(x)}; x = 0 . . . n

Typical oscillations seen from the AUVs feedback control system are of

low frequency. After we perform the FFT on the input we discard the high

frequency components. This feature set, without much modifications has

been used in the past for the same purpose[Swiniarski1990]

Steady State Error

The steady state error is a feature that can be calculated only after the

controller has reached its setpoint. It is time delayed for the oscillations to
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settle (if it does) and may often be 0. The feature is collected even when the

integral term is turned off for training.

Es = s− 1

N

∑
s(n)

4.2.2 Neural Network Tuner

I used a static feed-forward and back propagated neural network with a

sigmoid activation function. The neural network was implemented in Python

using the keras library. The number of input neurons was set the size of

the feature vector (in this case each FFT bin was considered an independent

feature set plus the rise time). Steady state error feature vector was not used

in this experiment. The loss function was set to mean squared error.

The learning set that was developed for this training consisted of

V = {F, Ts}

where F is the periodicity feature vector and with labels

L = {Kp, Ti, Td}

and only one degree of freedom was used, depth control. Depth control was

chosen because it had all 3 PID terms enabled and showed minor oscillations

due to physical constraints even when tuned extensively. The model trained

is shown in 4.2

The loss (mean square error) over 100 epochs of training is shown below

in figure 4.3
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Figure 4.2: Neural Network Model

Even though from fig 4.3 it seems that the network is learning, the output

from the network is unstable. The network attempts modification of stable

PID parameters when no intervention is necessary (steady state). The highly

non deterministic nature of the learned model makes it hard for a human to

tune the PID to their preferences after it has been deployed.

On the other hand, instead of regression, the use of a classifier is possible

to detect windy conditions. In this scenario the controller will be hand tuned

in many different weather conditions and the set of optimal parameters would

be chosen. The system then fits the PID behaviour against known labels of

weather conditions. The performance of the PID is then continuously mon-

itored and the system switches parameters automatically based on detected

weather.
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Figure 4.3: Model training loss (MSE)
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Chapter 5

Navigation

5.1 Filter Design and Architecture

The underwater vehicle and the surface craft have slightly different naviga-

tional requirements. The surface craft carries an onboard GPS receiver which

provides global navigation while the AUV does not have any absolute frame

sensors, only relative. As such the requirements for the navigation solution

on board the AUV is given as

• Relative navigation (referenced to start position)

• Able to compensate for lack of DVL bottom track for upto 30 seconds

• Absolute positioning error over 10 minutes of operation must be less

than 0.5m

while for the surface craft it is

• Local relative frame and its corresponding global frame navigation
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• Resistant to heavier local perturbations (swells, wind)

• Highly responsive

The GPS aided navigation for the ASV does not compensate for GPS

outages over reasonable expectations1 as the ASV operates in open sea with

no tall structures to obscure the signals. Multipath effects still need to be

accounted for however, from other structures on the ASV and the surface of

the water.

The requirements for each vehicle is considered and merged into a single

filter. In the future the AUV will be equipped with an USBL sensor (Ultra

Short BaseLine) which measures the distance and azimuth from a transpon-

der mounted on the ASV to the AUV giving us an offset from the ASV. This

helps us significantly in observing the positioning bias accumulated by the

DVL on the vehicle.

5.2 Comparison between IMUs

5.2.1 STIM300

The STIM300 inertial measurement unit is a tactical grade IMU that comes

with an accelerometer, gyroscope and inclinometer. The accelerometer sen-

sitivity of the instrument can be configured and we used 5g for a lower noise

floor (over the 10g) and better sensitivity. It is unlikely to encounter high jerk

in an underwater environment which is already damped. Unlike a traditional

1Not more than 1 minute
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IMU, the STIM300 does not come with a magnetometer. The advantages

are

• Not affected by magnetic fields and giant ferromagnetic structures such

as ships, around which an AUV is likely to operatre

• Inclinometer offers better sensitivity to orientation changes (tilt) at 2G

compared to the main accelerometer

The measured sensor mean and standard deviation when kept stable is

shown in table 5.1

The sensor shows high turn on static bias and must be calibrated for

before use in any filters. The standard deviation of the sensor readings is

within bounds according to the datasheet.

Measured µ Measured σ

Gyroscope std dev (rad) -0.000765 0.000258

Accelerometer std dev (ms−2) 0.552 0.0026

Inclinometer std dev (ms−2) 0.551 0.0075

Table 5.1: STIM300 measured sensor characteristics

5.2.2 Sparton AHRS-8

The Sparton AHRS-8 is an inertial measurement unit that contains gyro-

scopes, accelerometers and magnetometers. The advantage that is offers us

is that the unit contains a magnetometer which makes z axis bias observable.
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The magnetometer is however noisy and needs calibration against hard and

soft iron biases.

Measured Mean Measured std dev

Gyroscope std dev (rad) -0.071 0.0031

Accelerometer std dev (ms2̂) -0.077 0.0086

Magnetometer std dev (milliguass) 0.03 0.047

Table 5.2: AHRS8 measured sensor characteristics

5.2.3 SBG Ellipse

The SBG Ellipse which is on loan seems to be having some firmware bugs.

While it does output the GPS sattelite fix, its internal EKF seems to have

crashed or does not update. The unit will be replaced and measurements

will be taken again with a new sensor.

5.3 Comparison between GPS Antennae

In this section we compare the results obtained in stationary position between

two different GPS antennae connected to the same GPS reciever. Both the

antennae are passive and is powered by an low noise amplifier (LNA) on the

receiver board. The two antennae used are the ANTCOM-G5AntA1T1 and

ANTCOM-G5Ant53A4T1 and the characteristics are shown in table 5.3

As can be seen on figures 5.1 and 5.2 ANTCOM-53A4T1 performed better

showing reduced standard deviation in its measurements. It should be noted
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that the antenna (53A4T1) showed a lower standard deviation in spite of

using less satellites (11) as opposed to A1T1 which used 15.

Figure 5.1: 2D covariance ellipsoid comparison, x, y in degrees

It is recommended to use ANTCOM-G5Ant53A4T1 for projects requiring

precise positioning.

Antenna G1 G2 Std Dev (longitude) Satt Used vs Satt Available

53A4T1 -2.1 -2.0 1.19×10−7 11/15

A1T1 -4.1 -3.9 6.9×10−7 15/15

Table 5.3: Antenna characteristics comparison where G1 is antenna gain at

20 deg elevation, GPS L1 and G2 is gain at 20 deg elevation for GPS L2,

dBic
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Figure 5.2: 3D covariance ellipsoid comparison. The inner ellipsoid is by

53A4T1.

It is speculated that the antenna with the bigger dish performs better

because of its bigger ground plane giving it an advantage in SNR. The bigger

dish also has a better circular polarization gain at a 20 degree angle around,

in which there are lots of GPS satellites.

5.4 Preprocessing GPS Data

GPS data is received from the board in the world frame LLA coordinates as

well as world frame velocity and their associated standard deviations. The

first few seconds of a good GPS (with respect to number of satellites tracked

and the standard deviation) is used to set an origin. The WGS84 geodetic
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system is used.

Working in local frame has many advantages

• The AUV operates in pure dead reckoning mode most of the time due

to lack of GPS or USBL hence without the world transform

• The error terms in the Kalman filter are smaller

• Both the velocity and the positional fixes from the GPS provide ob-

servability to yaw axis drift equally

• The control system operating in the local frame does not need to be

transformed

In addition to offsetting the origin, the magnetic field declination at the

precise GPS LLA coordinate is calculated dynamically and applied to the

quaternion attitude.

5.5 Kalman Filtering

Usual techniques for navigational sensor fusion include the Extended Kalman

Filter (EKF), Error State Kalman Filter (ESKF) and the Unscented Kalman

Filter (UKF). Each sensor fusion method has its own pros and cons for use

in different environments. In previously done work I implemented an ESKF

for use with the AUV. The error state kalman filter is particularly robust in

environments which are highly non linear and hard to model or does not fit
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the assumptions of the full state EKF. My previous motivations for choosing

the ESKF were

• Error state always operates close to the origin and protects from sin-

gularities and guarantees linearlization

• The error state is always minimal in magnitude hence we can discard

second order products making computation of Jacobians fast

More benefits of the ESKF can be found in [madyastha2011extended]

Originally developed for use onboard the ASV and now iterated on and

used for comparison we also have an Unscented Kalman Filter. The advan-

tages the UKF has over a traditional EKF are

• Derivative free - does not require computation of Jacobian matrices

• Avoids errors rising from linearization in traditional EKF using the

unscented transform

According to [Wan2000] the UKF does not impose a higher computa-

tional load when compared to the EKF. It requires more computation and

memory space when compared to the ESKF.

5.5.1 Kinematic Equations

The kinematic equations that is used in either filter design is as follows
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p = p+ v∆t+
1

2
(R(a) + g)∆t2 (5.1)

v = v + (R(a) + g)∆t (5.2)

q = q ⊗ q{ω∆t} (5.3)

ab = ab (5.4)

wb = wb (5.5)

where R is the rotation matrix obtained from the quaternion orientation

and q{x} is the quaternion composed from the rotation x formed by setting

the real part of the 4 vector to 0 and the imaginary part to the vector.

p, v, ab, wb, g are vectors corresponding to the position in meters, velocity

in ms−1, accelerometer bias, gyro bias and the gravity vector

[
0 0 g

]T
respectfully. The gravity vector is parameterised as it can vary by location.

We can then form the kinematic state model by taking the derivative of

each with respect to time.

5.5.2 Error State Kalman Filter

We define the error state vector δx as

δx =



δp

δv

δθ

δab

δwb


(5.6)
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where the true state x = x + δx. Its dynamics follow from the kinematic

equations:

δp = δp+ δv∆t (5.7)

δv = δv + (−R([a]×δθ)−Rδab + g)∆t (5.8)

δq = RT [ω]×δθ − δwb∆t (5.9)

δab = δab (5.10)

δwb = δwb (5.11)

which we then represent as

δx+ i

where i holds the random impulses applied to the state.

The state transition matrix in continuous form A can be obtained from

(5.7)

The random impulse matrix Q is obtained by measuring the standard

deviations of the sensors in stationary state

Q =



σ2
p

σ2
v

σ2
a

σ2
ω


(5.12)
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A =



0 I 0 0 0

0 0 −R[a]× −R 0

0 0 −[ω]× 0 −I

0 0 0 0 0

0 0 0 0 0


(5.13)

Which can then be discretized to time step ∆t with a second order taylor

approximation as

Fd = I + A∆t+
1

2
A2∆t2 (5.14)

Prediction

The error state is predicted as

δx = Fδx (5.15)

but since the error state is initialized to 0 it always returns 0. The co-

variance is propagated forward

P = FPF T +Q (5.16)

this equation shows us that with every prediction step the covariance

grows bigger (due to the addition of the noise term in Q).

Correction

Now that we have the predicted error state we wait for sensor readings to

arrive. The sensor readings must be relatable to the true state vector from
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which we can find the residual or the measured error state.

Example: Arrival of DVL velocity data

We take the measurement vector

y =



0

vm

0

0

0


and the measurement matrix H as

H =


0

RT

. . .


to obtain the residual r as

r = y −Hx (5.17)

The measurement has its own covariance which we denote by matrix N .

The Kalman gain is defined as

K = PHT (HPHT +N)−1 (5.18)

Rewriting and taking the limit,

K = lim
P→0

PHT

HPHT +N
= 0 (5.19)

we can see that when our process model is accurate the process covariance

will be small which leads to a small to insignificant gain on the measurement.
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This means that the filter will prefer its predictions over the measurements.

It can also be seen that when the measurement noise N is high the filters

gain will be low forcing the filter to rely on its own prediction. This can be

a problem if the process covariance is itself high at this point. [Wan2000]

To solve for K we can rewrite (5.18) as

K = PHT (HPHT +N)−1 (5.20)

K(HPHT +N) = PHT (5.21)

(HPHT +N)TKT = HP T (5.22)

which is of the form AX = B

A covariance matrix is guaranteed to be positive semi definite as a co-

variance between two random variables is defined as

σx,y = E[(x− E(x))(y − E(y))]

and is invariant to positional changes giving us a symmetric matrix. Di-

agonalization of the matrix gives us a diagonal matrix containing variances

which can only be 0 or positive.

The solution for K can then be found with a robust Cholesky decompo-

sition.

The error state is then defined as

δx = Kr (5.23)

and is ready for injection to the true state for correction. The filter covariance

P needs to be updated as[Wan2000]
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P = (I −KH)P (I −KH)T +KNKT (5.24)

5.6 GPS Fault Detection

Most GPS receiver boards are not capable of filtering out multipath effects

without additional sensors. GPS multipath is when the receiver wrongly

reads a reflected signal instead of the shorted path. This can cause significant

jumps in GPS positioning. A chi square test is usually employed to check the

hypothesis that given our past sampling of measurements which lie in a cer-

tain distribution, is the new measurement vector realistic[Chambers2014].

The chi square statistic is computed by simply taking the innovation

covariance from the update step.

χ2 = zTS−1z

where S is from (5.18)

S = (HPHT +N)

The chi square table can then be consulted for the required confidence

and with the available degrees of freedom to make a prediction of it is a

completely wrong measurement. Chi square fault tolerance does not take up

significant computing resources and is easy to implement.
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5.7 Results

A test jig was designed on a trolley. All 3 different IMUs and GPS antennas

were mounted to the cart. The test location that was used was the NUS

track. The outer ring of the track served as a rough guide.

A track generated by pushing the trolley around the field is shown in

5.3. rviz with a tile from MapBox overlayed was used to generated the

visualization. However, the tile is not very high quality and is offset slightly.

The ESKF is run at 100Hz. Near the top left of the track there was a 1.57

minute GPS outage. As discussed in the requirements earlier, since we are

going to be operating at sea with an entire sky dome visible at all times,

extra long GPS outtages were not tuned or accounted for.

The filter works well in filtering unwanted jumps in position and veloc-

ity as can be seen from figure 5.5. These jumps happen when the receiver

reacquires fixes to various satellites or loses a fix.

The steady state performance (fig 5.6) of the filter shows good rejection

against unwanted noise while being highly responsively to small jerks that

can affect the control systems.
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Standard deviation Expected drift

Position (GPS) 0.07805m

Position (DVL) 0.01795m 2.1m/100m

Orientation 0.001541deg

Heading 1.7 deg/hr

Table 5.4: INS System Measurements

The measurements given simulated runs against bagged ROS data is given

below 5.4. GPS standard deviation is acceptable and so is the orientation

estimation. DVL only drift over an hour is higher than expected, but because

it is fully relative, the heading drift affects the positioning and rehoming back

significantly.
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Figure 5.3: Field test - filtered GPS track
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Figure 5.4: Rejection of sudden jumps
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Figure 5.5: Effectiveness
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Figure 5.6: Baseline Filtering (not moving)
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Figure 5.7: Velocity Filtering (moving)
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Chapter 6

Conclusion

An underwater simulation package was maintained and new inertial sensors

added which is essential for simulation of an AUV and USV. Hydro dynamic

models of the AUV was developed and use in the simulator together with its

existing control systems. Thrust of each of the AUV thrusters was measured

for use in both simulation and tuning of control systems. The simulator

was used to tune the control system and generate feature vectors to train a

new neural network based adaptive parameter estimator. Even though the

results from the parameter estimation was not good, an alternative concept

whereby we tune and let the system dynamically switch profiles based on

weather conditions was developed.

GPS, its basics and principles were studied and implemented. Multiple

GPS antennae were tested and and suggested. One of the biggest issues we

had at RobotX 2016 was the GPS receiver not working properly as well as

not having a full fledged, GPS aided INS system. The INS systems were
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combined to one package which can be run on either system or only one.

The GPS system in absence of a boat was taken field testing multiple times

to tune and develop new methods. Even though not detailed an Unscented

Kalman Filter was developed to compare, and no major differences was found

- both vehicles have been standardised to the same system.

Some drawbacks of the new system include slightly more than expected

jumps from the GPS receiver reacquiring fixes and I had a lot of problems

with magnetometer calibration. In the next iteration of the filter a tightly

coupled approach will be trialled as it has been proven to be accurate with

as less as 3 satellites for a short period of time. New field tests will be

conducted with a LIDAR providing mapping features so that real world drift

and inaccuracies can be measured numerically. In addition to that, Time of

Validity tests need to be performed in an unstable environment.
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